
SLIDE

(TI Contest version. NOT TO BE PUBLICALLY DISTRIBUTED)
© 2002 Dan Englender

1) Introduction
 1.1) What is SLIDE?
 1.2) Why was SLIDE created?
 1.3) Who should use SLIDE?
2) Getting Started
 2.1) Requirements
 2.2) Creating a SLIDE project
 2.3) Compiling and testing
 2.4) General information
 2.5) Simple commands
3) Libraries
 3.1) Introduction to libraries
 3.2) Main library
 3.3) GFX library
 3.4) Text library
 3.5) Math library
 3.6) Float library
 3.7) Misc library
 3.8) Silver library
 3.9) Appvar library
4) Limitations
5) Frequently Asked Questions
6) Tips and Tricks
7) Command Reference
8) Contact Information

1) Introduction
1.1) What is SLIDE?
 SLIDE is a new application programming language for the TI-83 Plus calculator.
It combines the power of assembly language programming with the ease of BASIC
programming. It provides an easy to use extendible command language in the familiar
ZDS interface. No knowledge of assembly language is required, though assembly
language subroutines can be integrated into SLIDE programs.

1.2) Why was SLIDE created?
 SLIDE was created to allow programmers and non-programmers alike to create
high quality applications for the TI-83 Plus. Assembly programming is very difficult to
master, and BASIC programming is very limited. SLIDE was created to bridge the gap
between the these two languages.

1.3) Who should use SLIDE?
 Anyone who wants to create an application for the TI-83 Plus calculator can use
SLIDE. It is easy enough to use that even people with no programming experience will
be able to use SLIDE after reading through the brief programming tutorial. Those with
programming experience in BASIC will find SLIDE more powerful, and very easy to
understand and use. Even assembly programmers may consider using SLIDE to remove
the tedium from simple routines and allow them to concentrate on the more difficult and
important aspects of their programs (which they may write in SLIDE or assembly
language).

1.4) Feature list

• Easy to understand command syntax
• Extremely extendible using libraries
• Interpreted language allows compile-time and run-time error checking
• Uses familiar ZDS interface/compiler
• Only necessary libraries are linked, saving space
• Much faster execution speed than BASIC programs, often nearing assembly

2) Getting Started
2.1) Requirements

• ZDS - Zilog Developer Studio (downloadable from http://www.zilog.com)
• TI-83 Plus calculator for on-calculator testing
• TI Flash Debugger/Simulator for on-computer testing (downloadable from

http://education.ti.com)

2.2) Creating a SLIDE project
 SLIDE comes with a template project to help you get started creating your own
SLIDE application. Create a new folder for your project, then copy all the files in the
template directory to this folder. Rename the �SlideTemplate.zds� file to whatever you
want your project name to be. Open this file and ZDS will load. Once ZDS loads you�ll
see a large list of files in the FileView. Don�t let this overwhelm you; most of these files
are library files that you�ll never need to be concerned with. The two files that you need
to know about are �slidetemplate.asm� and �settings.inc�.
 The �slidetemplate.asm� file holds your actual slide program. Double click it to
open the file. You�ll see something that looks like this:
;Sample SLIDE application
 INCLUDE "slides.inc"
 INCLUDE "mainlib.inc"
 INCLUDE "gfxlib.inc"
 INCLUDE "textlib.inc”
 INCLUDE "misclib.inc”
 INCLUDE "mathlib.inc”
 INCLUDE "silverlib.inc”
 INCLUDE "floatlib.inc”
 INCLUDE "appvarlib.inc"

 DefineMainSlide MainSlide
 LargeText 10,28,"SLIDE Template"
 WaitKey
 Return
The first line starts with a semicolon, indicating that it is a comment. You can put
comments anywhere in your program. All text on a line after a semicolon will be
ignored. The next line includes the �slides.inc� file into your project. This is a necessary
file that must be included in all projects. The next eight lines include different library
files, each of which provides commands that you can use in your SLIDE program.
 Now the real program starts. The DefineMainSlide command, followed by a
label, indicates where the beginning of the application is. The next line executes a
LargeText command, which displays text to the screen in the large font. Then WaitKey
pauses until a key has been pressed, and Return exits the program and returns to the
operating system. More information on these and other commands can be found in the
command reference.
 The �settings.asm� file holds configuration information for the application, and
will look like this:
 IFNDEF _SETTINGS_
 DEFINE _SETTINGS_
 DEFINE TI83P
; DEFINE TI73

Version EQU 1
AppName EQU "SlideTmp"
MaxSlideDepth EQU 10
NumVariables EQU 26
; DEFINE FASTSPEED
; DEFINE LIMITEDUSE
; DEFINE TIOSCHECK
;MajorTIOSVersion = 1
;MinorTIOSVersion = 14
 ENDIF
The first two lines are unimportant, they�re just for the compiler. The next line, DEFINE
TI83P, indicates that the application should be created for the TI-83 Plus calculator. If
you want to compile the SLIDE application for the TI-73 calculator instead, comment
this line (by putting a semicolon in front of it), and uncomment the next line (by
removing the semicolon). SLIDE programs should compile identically for the TI-83 Plus
and TI-73, but each compile must be done separately, you can not compile for both
platforms at the same time.
 The next line defines the version number of the program. This is a number 1-255
that is placed into the header of the application. You don�t need to change this if you
don�t want to. The next line defines the name of the application (as it will appear on the
APPS menu). This name must be eight characters long (you can pad it with spaces if you
want a shorter name) and must be enclosed in quotes. The rest of the lines are for other
compiling options which are detailed later in this document.

2.3) Compiling and testing
 Compiling your SLIDE project is easy, just press the F7 key in ZDS. Compile
information will display in the build window, and you can double click on any errors to
jump to the line where they occurred. Some errors are triggered by SLIDE�s error
checking and should be descriptive as to what the error might be caused by. However,
other errors may be triggered by ZDS itself, and these will be more cryptic, but they
should still point to the line number in question.
 Once the project has been compiled, you can test it. If you want to test on a
computer, you can use the Flash Debugger/Simulator and load the .hex file.

3) Libraries
3.1) Introduction to libraries
 Without libraries SLIDE applications would be unable to do anything. Libraries
provide all commands in the SLIDE language; no commands are built into the language.
The SLIDE template starts with the Main, Math, and Text libraries in the project. You
will need to add additional libraries if you need to use commands not included in the
defaults. Because libraries take up space in your SLIDE application, it is good practice to
include only the libraries you need in your project.
 To add a library to your project, choose �Project : Add to Project : Files�� from
the ZDS menu bar. Find the .asm file for the library and select it. Then, in your SLIDE
program file, add another line near to the top to INCLUDE the .inc file for the library.
For example, if you wanted to use the floating point library, you would add the line
 INCLUDE �floatlib.inc�
(note: there is a blank space before the �INCLUDE�)
 To remove a library from your project, click on the .asm file for the library in the
FileView panel, and then choose �Project : Remove from Project� from the ZDS menu
bar. Then remove the INCLUDE line for the .inc file associated with the library from the
SLIDE program file.

3.2) Main Library
 The Main library provides basic language commands. All SLIDE programs must
include the Main library; without it there is no way to return to the operating system.
Commands included in the main library are:

• Copy - Copies data to a variable (see: Load)
• Exec - Executes an assembly language sub-routine
• IfEqu - Executes next command if conditions are equal
• IfGreater - Executes next command on greater condition
• IfLess - Executes next command on less than condition
• IfNEqu - Executes next command if conditions are not equal
• Jump - Jumps to a label in the SLIDE program
• Load - Loads data to a variable (see: Copy)
• LoopToNum - A looping mechanism (similar to For loop)
• LoopToZero - A simpler and faster looping mechanism
• Quit - Returns control to the operating system
• Return - Returns control to the calling function
• Slide - Calls a SLIDE sub-routine

3.3) GFX Library
 The GFX library provides graphics and display related commands. For text
commands see the Text library. Commands included in the GFX library are:

• ClearScreen - Clears the screen
• IfPointOn - Executes the next command if a screen pixel is black
• InvertScreen - Inverts the current screen image
• Line - Draws a line

• Point - Draws a point
• Rect - Draws a rectangle
• Sprite - Displays a graphic onto the screen

3.4) Text Library
 The text library provides commands to display text, characters, and numbers in
the large or small fonts. Commands included in the text library are:

• LargeChar - Displays a character in large font
• LargeNum - Displays a number in large font
• LargeText - Displays text in large font
• SmallChar - Displays a character in small font
• SmallNum - Displays a number in small font
• SmallText - Displays text in small font

3.5) Math Library
 The math library provides simple integer math functions for use with the built-in
variable type. Commands included in the math library are:

• BoolAnd - Logical AND function
• BoolOr - Logical OR function
• BoolXor - Logical XOR function
• Dec - Decrements a variable
• Div - Divides two numbers
• Inc - Increments a variable
• Minus - Subtracts two numbers
• Mult - Multiplies two numbers
• Plus - Adds two numbers
• Rand - Generates a random number

3.6) Float Library
 The float library adds a variable type for floating point numbers, and math and
miscellaneous functions for use with float variables. Commands in the float library are:

• FDec - Decrement a floating point variable
• FDiv - Divide two floating point numbers
• FFPart - Returns the fractional part of a floating point number
• FIfEqu - Executes next command if numbers are equal
• FIfGreater - Executes next command if numbers in greater condition
• FIfLess - Executes next command if numbers in less condition
• FIfNEqu - Executes next command if numbers are not equal
• FIPart - Returns the integer part of a floating point number
• FLargeNum - Displays a floating point number in large text
• FLoad - Loads a value to a floating point variable
• FMinus - Subtract two floating point numbers
• FMult - Multiply two floating point numbers
• FPlus - Adds two floating point numbers

• FRand - Generates a random floating point number
• FSmallNum - Displays a floating point number in small font
• FSqRoot - Calculates the square root of a floating point number
• FSquare - Squares a floating point number
• FToVar - Converts a floating point number to an integer variable

3.7) Misc Library
 The misc library provides miscellaneous, especially keyboard related, commands.
Commands in the misc library are:

• Delay - Pauses the calculator for a length of time
• IfAnyKey - Executes next command if any key was pressed
• IfKey - Executes next command if a certain key was pressed
• IfNKey - Executes next command if a certain key was not pressed
• LoadKey - Loads the current key press to a variable
• LoadWaitKey - Waits for a key to be pressed then loads it to a variable
• LoadWaitTIOSKey - GetKey-style keyboard input (allows 2nd/Alpha).
• PauseForKey - Pauses until a certain key is pressed
• WaitKey - Waits for any key to be pressed

3.8) Silver Library
 The silver library provides commands related to the Silver Edition version of the
TI-83 Plus. Commands in the silver library are:

• DelayMilli - Delays for a certain number of milliseconds (SE only)
• FastSpeed - Sets CPU to 15 MHZ if executing on Silver Edition
• IfNSilver - Executes next command if not running on Silver Edition
• IfSilver - Executes next command if running on Silver Edition
• SlowSpeed - Sets CPU to 6 MHZ

3.9) Appvar Library
 The appvar library provides commands to create, read, and write data to/from
application variables. Commands in the appvar library are:

• IfAppVarExist - Executes next command if this app�s appvar exists
• IfAppVarNExist - Executes next command if this app�s appvar doesn�t exist
• MakeAppVar - Create appvar for this application.
• ReadAppVar - Read a value from this application�s appvar.
• WriteAppVar - Write a value to this application�s appvar.

4) Limitations
Some of these limitations are imposed by the ZDS compiler, some are limitations

of this SLIDE implementation. Some will be modified or removed in future SLIDE
versions, some are here to stay. In any case, here they are:
• There are only 26 available variables. (More variables can be added by changing the

NumVariables setting)
• Variables are positive integer-only and can not be greater than 32767. (Use floating

point variables if negative, non-integer, or larger numbers are necessary).
• There are 8 floating point variables (more can be added).
• Floating point variables are limited to ±9*1099 and have a 14 digit precision.
• Sub-routine depth is limited to 10 levels. (This can be modified by changing the

MaxDepth setting).

5) Frequently Asked Questions
Q. Can SLIDE be used to create multi-page applications?
A. No, the current version of SLIDE does not support multi-page applications. Multi-

page support may be added in a future version.

Q. Does SLIDE include all the commands in a library automatically?
A. Yes, SLIDE includes all commands in libraries you include by default. If you would

only like to use some of the commands you may remove the remainder to save space.
Information this procedure is in the Tips and Tricks section below.

Q. Is this version of SLIDE complete?
A. No, this is not the final release version of SLIDE. Almost all features are

implemented, but error checking is not completely implemented, and more libraries
will be available for the release version. For that reason, this version of SLIDE is
NOT TO BE DISTRIBUTED.

6) Tips and Tricks
Coming Soon!

7) Command Reference
Name of Command Library
Description
Syntax
Examples/Notes

BoolAnd Math
Logical AND function
Syntax: BoolAnd value1, value2[, variable]
Note: If Variable is omitted, result will be stored to Value1 (and in this case Value1
must be a variable)

BoolOr Math
Logical OR function
Syntax: BoolOr value1, value2[, variable]
Note: If Variable is omitted, result will be stored to Value1 (and in this case Value1
must be a variable)

BoolXor Math
Logical XOR function
Syntax: BoolXor value1, value2[, variable]
Note: If Variable is omitted, result will be stored to Value1 (and in this case Value1
must be a variable)

ClearScreen GFX
Clears the screen
Syntax: ClearScreen

Copy Main
Copies data to a variable
Syntax: Copy value1, variable
Note: This function is the same as the Load function, but with the arguments
reversed. It is included for BASIC programmers who are used to the → (STO)
command.

Dec Math
Decrements a variable
Syntax: Dec variable
Example: Dec VarA

Delay Misc
Delays for a length of time
Syntax: Delay value1
Note: The length of delay is not particularly consistent (use DelayMilli if you need an
exact time), but a value of 1 should be approximately 1/200 of a second.

DelayMilli Silver
Delays for a number of milliseconds

Syntax: DelayMilli value1
Note: This command is only available on the Silver Edition (it will immediately
return if it is executed on the TI-73 or TI-83 Plus). DelayMilli uses the Silver
Edition�s crystal timer for accurate timing.

Div Math
Divides two numbers and store the result to a variable
Syntax: Div value1, value2[, variable]
Note: If Variable is omitted, result will be stored to Value1 (and in this case Value1
must be a variable)

Exec Main
Executes an assembly language sub-routine
Syntax: Exec label
The assembly language sub-routine does not need to take any special precautions
(other than overwriting variables) or actions, and should just terminate with a ret
when it is done.

FastSpeed Silver
Sets the Silver Edition CPU speed to 15 MHZ
Syntax: FastSpeed
Note: This command has no effect on the TI-73 and TI-83 Plus.

FDec Float
Decrements a floating point number
Syntax: FDec float_variable
Example: FDec Float1

FDiv Float
Divides two floating point numbers
Syntax: FDiv float_variable1, float_variable2[, float_destination]
Note: If float_destination is omitted, result will be stored to float_variable1

FFPart Float
Returns the fractional part of a floating point number
Syntax: FFPart float_variable

FIfEqu Float
Executes next command if numbers are equal
Syntax: FIfEqu float_variable1, float_variable2

FIfGreater Float
Executes next command if numbers are in greater than condition
Syntax: FIfGreater float_variable1, float_variable2

FIfLess Float
Executes next command if numbers are in less than condition
Syntax: FIfLess float_variable1, float_variable2

FIfNEqu Float
Executes next command if numbers are not equal
Syntax: FIfNEqu float_variable1, float_variable2

FIPart Float
Returns the integer part of a floating point number
Syntax: FIPart float_variable

FLargeNum Float
Displays a floating point number in large text
Syntax: FLargeNum XCoord, YCoord, float_variable
Note: Up to seven digits will be displayed

FLoad Float
Loads a value to a floating point number
Syntax: FDiv float_variable, value
Note: Value is limited to size of integer variables (IE. Must be 32767 or less)

FMinus Float
Subtracts two floating point numbers
Syntax: FMinus float_variable1, float_variable2[, float_destination]
Note: If float_destination is omitted, result will be stored to float_variable1

FMult Float
Multiplies two floating point numbers
Syntax: FMult float_variable1, float_variable2[, float_destination]
Note: If float_destination is omitted, result will be stored to float_variable1

FPlus Float
Adds two floating point numbers
Syntax: FPlus float_variable1, float_variable2[, float_destination]
Note: If float_destination is omitted, result will be stored to float_variable1

FRand Float
Generates a random floating point number
Syntax: FRand max_value, float_variable
Note: Loads float_variable with a floating point value between 0 and max_value
minus one

FSmallNum Float
Displays a floating point number in small text
Syntax: FSmallNum XCoord, YCoord, float_variable
Note: Up to seven digits will be displayed

FSqRoot Float
Calculates the square root of a floating point number
Syntax: FSqRoot float_variable

FSquare Float
Squares a floating point number

Syntax: FSquare float_variable

FToVar Float
Converst a floating point number to an integer and stores it to a variable
Syntax: FToVar float_variable, variable
Note: value of float_variable is limited to 9999

IfAnyKey Misc
Executes next command if any key was pressed
Syntax: IfAnyKey

IfAppVarExist Appvar
Executes next command if this application�s appvar exists
Syntax: IfAppVarExist
Note: Does not check any data in the appvar, only checks to see if an appvar with the
proper name exists

IfAppVarNExist Appvar
Executes next command if this application�s appvar does not exist
Syntax: IfAppVarNExist

IfEqu Main
Executes the next command if numbers are equal
Syntax: IfEqu value1, value2

IfGreater Main
Executes the next command if numbers are in greater than condition
Syntax: IfGreater value1, value2

IfKey Misc
Executes the next command if a certain key is pressed
Syntax: IfKey key_value
Example: IfKey skEnter

IfLess Main
Executes the next command if numbers are in less than condition
Syntax: IfLess value1, value2

IfNEqu Main
Executes the next command if numbers are not equal
Syntax: IfNEqu value1, value2

IfNKey Misc
Executes the next command if a certain key was not pressed
Syntax: IfNKey key_value
Note: This command could be used to make sure a user has let go of a repeating key

(like Del)

IfNSilver Silver
Executes the next command if application is not executing on a Silver Edition
Syntax: IfNSilver
Note: TI-73�s count as not Silver Edition

IfPointOn GFX
Executes the next command if a screen pixel is black
Syntax: IfPointOn XCoord, YCoord

IfSilver Silver
Executes the next command if application is executing on a Silver Edition
Syntax: IfSilver

Inc Math
Increments a variable
Syntax: Inc variable

InvertScreen GFX
Inverts the screen display (black becomes white, white becomes black)
Syntax: InvertScreen

Jump Main
Jumps to a label in the SLIDE program
Syntax: Jump label

IfSilver Silver
Executes the next command if application is executing on a Silver Edition
Syntax: IfSilver

LargeChar Text
Displays a character in large font
Syntax: LargeChar XCoord, YCoord, character
Note: Only characters numbered 0-127 may be used

LargeNum Text
Displays a number in large font
Syntax: LargeNum XCoord, YCoord, value

LargeText Text
Displays text in large font
Syntax: LargeText XCoord, YCoord, text[, color]
Note: If color is omitted, normal black-on-white text is displayed. If color is
TextWhite, white-on-black text is displayed.

Line GFX
Draws a line
Syntax: Line X1, Y1, X2, Y2, color
Note: Color should be one of: LineOn, LineOff, or LineXor

Load Main
Loads data to a variable
Syntax: Load variable, value
Note: This performs the same function as the Copy command, but is meant for
assembly programmers accustomed to using the ld opcode.

LoadKey Misc
Loads the current key press to a variable
Syntax: LoadKey variable
Note: If no key is pressed a value of zero will be loaded to the variable

LoadWaitKey Misc
Waits for a key to be pressed then loads it to a variable
Syntax: LoadWaitKey variable

LoadWaitTIOSKey Misc
Waits for a key to be pressed with GetKey-style keyboard input (allows 2nd/Alpha),
and then loads the key press to a variable
Syntax: LoadWaitTIOSKey variable

LoopToNum Main
A looping mechanism (similar to For loops)
Syntax: LoopToNum variable, max_value, label[, increment_value]
Note: Variable must be pre-initialized. When a LoopToNum is encountered, it will
add increment_value (default value is 1) to variable, and if variable is less than
max_value, it will jump to label.

LoopToZero Main
A simpler and faster looping mechanism
Syntax: LoopToZero variable, label
Note: Variable must be pre-initialized. When a LoopToZero is encountered, it will
subtract one from variable, and if variable is non-zero, it will jump to label.

MakeAppVar Appvar
Create appvar for this application
Syntax: MakeAppVar
Note: This will create an appvar with size and default data information based on the
values at the top of appvar.asm. Open the appvar.asm file in your project to change
these values from the defaults.

Minus Math
Subtracts two numbers and stores the result to a variable
Syntax: Minus value1, value2[, variable]
Note: If Variable is omitted, result will be stored to value1 (and in this case value1

must be a variable)

Mult Math
Multiplies two numbers and stores the result to a variable
Syntax: Mult value1, value2[, variable]
Note: If Variable is omitted, result will be stored to value1 (and in this case value1
must be a variable).

PauseForKey Misc
Pauses until a certain key is pressed
Syntax: PauseForKey key_value
Example: PauseForKey skEnter

Plus Math
Adds two numbers and stores the result to a variable
Syntax: Plus value1, value2[, variable]
Note: If Variable is omitted, result will be stored to value1 (and in this case value1
must be a variable)

Point GFX
Draws a point
Syntax: Point XCoord, YCoord, color
Note: Color should be PointOn, PointOff, or PointXor

Quit Main
Returns to the operating system
Syntax: Quit
Note: This command can be executed at any time, even in a sub-routine.

Rand Math
Generates a random number
Syntax: Rand variable, max_value
Note: The generated number will be between zero and max_value minus one

ReadAppVar Appvar
Read a value from this application�s appvar
Syntax: ReadAppVar offset, variable
Note: The offset is the position in the appvar to read from. Starts from a position of
zero.

Rect GFX
Draws a rectangle
Syntax: Rect X1, Y1, X2, Y2, color
Note: (X1,Y1) is the upper left corner, and (X2,Y2) is the lower right corner. Color
should be RectFilledOn, RectFilledOff, RectFilledXor, RectOutlineOn,
RectOutlineOff, or RectOutlineXor

Return Main
Returns to the calling sub-routine
Syntax: Return
Note: If there is no calling sub-routine, this command will return to the operating
system.

Slide Main
Calls a SLIDE sub-routine
Syntax: Slide label

SlowSpeed Silver
Sets CPU speed to 6 MHZ
Syntax: SlowSpeed

SmallChar Text
Displays a character in small font
Syntax: SmallChar XCoord, YCoord, character
Note: Characters are limited to characters with values between 0 and 127

SmallNum Text
Display a number in small font
Syntax: SmallNum XCoord, YCoord, value

SmallText Text
Display text in small font
Syntax: SmallText XCoord, YCoord, text[, color]
Note: Text must be enclosed in quotation marks. Default is black-on-white text. If
color is TextWhite, text will be displayed as white-on-black.

Sprite GFX
Displays a graphic onto the screen
Syntax: Sprite XCoord, YCoord, graphic
Note: Graphic should be in the following format:
 db height_in_pixels, width_in_pixels
 db graphic data

WaitKey Misc
Waits for any key to be pressed
Syntax: WaitKey

WriteAppVar Appvar
Writes a value to this applications� appvar
Syntax: WriteAppVar offset, value
Note: The offset is the position in the appvar to read from. Starts from a position of
zero.

8) Contact Information
dan@detachedsolutions.com

